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Synopsis 
Master curves of log &(t /K)  against log ( t / K )  were constructed from experimental data 

on creep compliance, relaxation modulus, stress-optical and strain-optical coefficients of 
two types of epoxy resins at a series of temperatures in the transition region. The charac- 
teristic creep or relaxation time K for each temperature was defined and tabulated. The 
master curves were fitted to the reduced equation of the Gauss error integral form and the 
following characteristic parameters were calculated: Q1, the glassy-state parameters 
(creep compliance, relaxation modulus, stress-optical or strain-optical coefficients); &2, 

the rubbery-state parameters; Td, the distinctive temperature; Kd, the characteristic 
creep or relaxation time a t  Td; and the parameters ht and hg of the steepness of master 
curves at the transition and glassy regions, respectively. The investigation was extended 
to the determination of the distribution functions of mechanical and optical retardation 
and relaxation times L (log 7 )  and H (log T ) ,  respect,ively, representing the differential 
contribution to instantaneous compliance, stress-optical or strain-optical coefficients as- 
sociated with retardation times and instantaneous modulus, stress-optical or strain-opti- 
cal coefficients associated with relaxation times. 

I. Introduction 

In  a previous paper by the author' the experimental study of the visco- 
elastic properties of two types of epoxy polymers was undertaken. These 
polymers are of great importance in various applications, particularly in 
studying ordinary photoelasticity by transmitted light, as well as in the 
method of birefringent coatings for the study of the surface strain distribu- 
tion of opaque models in reflected light. Creep and relaxation individual 
curves were plotted at various steps of temperature from the glassy up to 
rubbery state of these polymers. Master creep curves and master relaxa- 
tion curves of these resins were constructed, representing the mechanical 
and optical behavior of these polymers at their transition regions. Three 
groups of master curves were plotted, for the creep compliance D, relaxa- 
tion modulus E, and stress-optical or strain-optical coefficients C,  and 
C,, respectively. The first group of curves describes the mechanical 
behavior of the polymers and the two last groups their optical behavior. 
The stress-optical or strain-optical coefficients are defined as the difference 

* This research was carried out when the author held a fellowship of the National Acad- 
emy of Sciences of the U. S. A. 
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of principal stresses or strains, respectively, in the plane of the wavefront 
producing a relative retardation of one wavelength per inch of thickness. 

The two types of epoxy resins were (a )  hot-setting epoxy resin made from 
Araldite liquid prepolymer (Hysol Araldite 6053) and 40% phthalic an- 
hydrite hardener represented as H-100-40 polymer and (b)  cold-setting 
epoxy resin made from Araldite liquid prepolymer (CIBA Araldite 6005) 
and 8% triethylenetetramine hardener represented as C-100-0-8 polymer. 
It was proved that the time-temperature superposition principle, which was 
proved to be valid for a great number of amorphous high polymers, holds 
for the creep compliance and the relaxation modulus of these two cross- 
linked polymers. Moreover, the validity of this principle was extended to 
stress-optical and strain-optical coefficients. The creep and relaxation 
time factors k for each master curve were determined and the equality of 
the k factors for mechanical and for optical creep and relaxation was estab- 
lished. 

Creep and relaxation data embodied in constructed master curves 
were used in this paper to define the characteristic parameters of the poly- 
mers. The characteristic creep and relaxation time K was introduced; 
this corresponds to the time at which the creep or relaxation functions at- 
tain the geometric mean values of the quantities corresponding to the 
glassy and rubbery consistencies.2 All master curves were plotted on a 
log-log scale, and the values of K were determined for several temperatures. 
Plots of log K against 1/T, where T is the absolute temperature derived 
from the corresponding master curves, allow the determination of the 
apparent activation energy. The master curves were fitted to a reduced 
equation of the Gauss error integral form and the characteristic parameters 
of each master curve which relate the time and temperature dependence of 
D, El C,  and C,, respectively, were determined. 

The time-temperature superposition principle togethcr with the Gauss 
error integral representation appear to constitute a general method for con- 
densed representation of mechanical and optical properties of these poly- 
mers in the transition region. 

Distribution functions of retardation and relaxation times were calcu- 
lated and compared. Similarities in the responses to mechanical and optical 
distribution functions are discussed. 

11. Experimental Results 
Master composite curves corresponding to an arbitrary reference tem- 

perature of 25OC. were constructed previously' by using creep and relaxa- 
tion individual curves a t  several steps of temperatures and by applying 
the timetemperature superposition principle. These curves were plotted 
in the form of Q ( t / k )  versus log ( t / k ) ,  where Q(t /k )  represents in 
turn one of the quantities: creep compliance D, stress-optical C,, 
or strain-optical C. coefficients (for creep tests) relaxation modulus El and 
stress-optical C,, or strain-optical C, coefficients (for relaxation tests). 
The quantity k, which is tt time factor which is a function of temperature 
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alone, expresses the amount of shift of the experimental curves a t  different 
temperatures required in order to obtain the corresponding master compos- 
ite curves, and it is determined completely if the reference temperature 
To is fixed. 
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Fig. 1. Master creep compliance curve, master relaxation modulus curve and their 
distributions of retardation and relaxation times for H-100-40 epoxy resin. 

J4g. 2. Master creep and relaxation stress-optical coefficient curves and their distribu- 
tions of retardation and relaxation times for H-100-40 epoxy resin. 
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Fig. 3. Master creep and relaxation strain-optical coefficient curves and their distribu- 
tions of retardation and relaxation times for H-100-40 epoxy resin. 
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4. Master creep compliance curve, master relaxation modulus curve and 
distributions of retardation and relaxation times for C-100-0-8 epoxy resin. 

their 

Instead of the arbitrary definition of the reference temperature To and 
the time factor k, Tobolsky and co-workers2 have introduced a new quan- 
tity K, called the characteristic creep or relaxation time at each tempera- 
ture. This quantity is defined as the time required to the function Q(t) a t  
any temperature to attain the gkometric mean value of the function Q1.2 ( t ) ,  

characteristic of the glassy and rubbery consistencies. The previously 
plotted master composite curves in the form of Q(t/k) against log ( t / k )  are 
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tog (Vk) 

Fig. 5. Master creep and relaxation stress optical coefficient curves and their distribu- 
tions of retardation and relaxation times for C-100-0-8 epoxy resin. 

lop ( t / K )  

Fig. 6. Master creep and relaxation strain-optical coefficient curves and their distribu- 
tions of retardation and relaxation times for C-100-0-8 epoxy resin. 

in this paper plotted in the form of log &(t /K)  against log ( t /K)  and the 
origins of each log time scale were shifted in order to coincide with the de- 
fined characteristic times of each curve. The derived master curves are 
plotted in Figures 1-6. 

Examination of Figures 1 and 4 giving curves of the creep compliance 
D and relaxation modulus E for both polymers shows that in logarithmic 
time scale the product of modulus times compliance E(t /K)-D( t /K)  is 
unity in all transition-free regions and tends to unity in the transition 
region. 
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Fig. 7. Temperature dependence of characteristic (0) creep and (+) relaxation times 
and of (X)  apparent activation energy for H-100-40 epoxy resin. 

Since both creep compliance and relaxation modulus have finite long 
time limits neither polymer shows a Newtonian Aow and the viscosity 
9 can be assumed to tend to infinity. 

We denote by KO and K, the characteristic times derived from creep and 
relaxation curves and K,,, K,, and K,,, K,, the characteristic times for 
creep and relaxation stress-optical and strain-optical coefficients? respec- 
tively. The values of these coefficients at various temperatures are tab- 
ulated in Tables I and 11. The equality of the various KO and K ,  can be 
derived from these values. 

Plots of log K against 1/T, where T is the absolute temperature, derived 
from the various master curves are shown in Figures 7 and 8. In  the same 
figures is shown the dependence of the apparent activation energy AH,,t for 
the two types of epoxy resins as it is calculated by the Arrhenius equation or 
its reciprocal form. The Arrhenius equation was used for the calculation 
of the variation of the apparent activation energy in creep D curves as well 
as in all C, curves while its reciprocal form used for the corresponding re- 
laxation E curves and all Cc curves. These two forms are expressed by 
eq. (1) 

A H - 6  = f 2.303R[d log K / d ( l / T ) ]  (1) 
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Wig. 8. Temperature dependence of characteristic (0) creep and (+) relaxation times 
and of ( X )  apparent activation energy for C-100-0-8 epoxy resin. 

where R is the gas constant, K the characteristic creep or relaxation time, T 
the absolute temperature, and the minus sign corresponds to Arrhenius rela- 
tion. 

In  all cases AHact passes through a definite maximum defining the dis- 
tinctive temperature Td for each polymer and the corresponding distinctive 
creep and relaxation time Kd. The values of AH,,$ for various values of 
1/T are given also in Tables I and 11. The distinctive temperature Td for 
both epoxy resins was found to be approximately 5 O O C .  It is also worth- 
while noting that these maxima have the same values for both types of 
epoxy resins and for all characteristic quantities examined. 

The values of the parameters characterizing the viscoelastic properties of 
the two types of epoxy resins are listed in Table 111. These parameters are 
the glassy-state parameters Q1, the rubbery-state parameters Q2, log K d ,  
corresponding to the distinctive temperature Td and the slope h, which is 
related to the negative slope n of the corresponding master curves log 
Q,,r(t/K) versus log ( t /K)  at the value of log ( t /K)  for which log Qe,,(t/K) 
attains the mean value of the two extreme consistencies. 

111. Analytical Expression of the Various Master Curves 

It was shown by Tobolsky and co-workers2S3 that the composite creep 
and relaxation curves of various amorphous polymers in their respective 
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log (tlk) 

Fig. 9. Master creep and relaxation curves for H-100-40 epoxy resin on normal prob- 
ability graph paper. 

transition regions could be adequately reproduced by an equation of the 
Gauss error integral form : 

log Q(t/K) = [(log Q1 + log Qd/21 - [(log &I - log 4?2)/21 erf(h log t / K )  
where 

erf x = 2 ~ ' / ~ ~ e - ~ ~ d u  ( 2 )  
is the error integral and h is the adjustable parameter of the Gauss error 
curve. This could be obtained from an examination of the various master 
curves. It is apparent that if the negative derivative of each master 
curve is plotted against the log of temperature divided by the characteristic 
time K ,  the resulting curve is composed of two branches, each of which 
approximates a Gauss error curve with different parameter h. 

The quantities 1/2 (log Q1 + log Q2) for the two types of epoxy resins were 
readily determined from the corresponding master curves at their inflection 
points. Since all master curves tend to an asymptotic value in their rub- 
bery states, the values of log Q2 can be determined. From the values of 
log Q2 and the ordinates a t  the corresponding inflection points, the values 
of log Q1 can be determined; an immediate check could be made by observ- 
ing whether the corresponding master curves approach asymptotically these 
glassy limits. When the corresponding log Q2 are determined, the values 
of l/z(log Q1 - log Q2)  are found. 

For the evaluation of the parameters h, we plotted on normal probability 
paper the curves of A versus log (L/K), where 

A = log Q,,r(t/K) - log &z/log Qi - log Q2 X 100 (3) 
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Fig. 10. Maater creep and relaxation curves for C-100-0-8 epoxy resin on normal prob- 
ability graph paper. 

These plots are shown in Figures 9 and 10 for both types of epoxy resins. 
Each curve in these plots is formed by two distinctive straight lines with 
different slopes to which correspond different values of the parameter h. 
The one parameter (h,) is related to the behavior of the polymer at  the 
glassy state and its validity extends approximately up to the distinctive 
temperature Td. The other paramter (ht) is valid for the rubbery state 
and the transition region. This means that the predominating deforma- 
tion mechanism in which creep or relaxation processes can occur in the 
glassy state is characteristically different from the deformation mechanism 
a t  the transition and partly the rubbery regions. Indeed, the deformation 
mechanism at the glassy state is due to deformation of primary crosslinking 
bonds, behaving purely elastically, while in the transition region, slipping 
of secondary crossbonds contributes mainly to the deformation of the 
polymer. It is also noteworthy that the values of all ht and h, are approxi- 
mately the same at the various creep and relaxation A curves of each epoxy 
resin. These values are determined from one of the following relations 

h = 1.645/I1 - 1 5 0  = 1.645/I50 - I g g  = O.946/1g - 1 5 0  = 

O.946/150 - 191 = 0.477/125 - I50 = 0.477/150 - 1 7 5  

where I l  denotes the intercept on the abscissa a t  1% ordinate, etc. The 
parameters ht and h, for the two epoxy resins are given in Table 111. 

IV. Distribution Functions of Retardation and Relaxation Times 

The functions L(1og T) and H(1og T) expressing the distribution functions 
of retardation or relaxation times in terms of the argument log T are re- 
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lated to the function L (7) and H (T), respectively, by means of the rela- 
tions. 

L(l0g 7 )  = 2.3037L(~) 

and 

H(1og 7 )  = 2.30.778(~)  

where L(7) and H ( 7 )  express the distributions of retardation or relaxation 
times. 

The first approximations for the functions L(1og 7) or H(log 7) are: 

L’(l0g 7) = -2.303 [Q,(t/u)d log Q,(t/u)/d log t ] t  = 

H’(1og 7) = -2 .303[Qc(t /~,)d log Qr(t /u) /d  log t ] t  = 

(4) 
(5) 

Since we are concerned only with the distribution of retardation or relaxa- 
tion times related to the transition regions and corresponding to the portion 
of total distribution containing small retardation or relaxation times, we 
obtain the first approximations of the function L(1og 7) or H(1og 7) if we 
subtract the corresponding glassy-state parameters from all values of 
Q,,,(t/K). This subtraction corresponds to the exclusion from the distribu- 
tions of retardation or relaxation times, which are assumed to have a bi- 
modal distribution, of the one mode which corresponds to the glassy-state 
parameter and which contains a set of very long retardation or relaxation 
times, depending on the molecular weight of the polymer. The detailed 
shapes of the distribution functions are thus known throughout the region 
of time scale in which the consistencies change from those of a soft rubber to 
these of a hard glass. These functions are plotted in Figures 1-6, together 
with the corresponding master curves. 

The shape of the distribution curves given by their first approximations 
is such, that, when they are used to recompute the respective functions 
Q,,,(t/K), they give a fairly good overall fit and they are especially good in 
the low time ranges corresponding to glassy-state characteristics. There- 
fore, a second-order approximation, yielding a further improvement in the 
distribution functions, was not felt to be necessary. 

Examination of the various distribution curves shows that: (a) all curves 
possess a distinctive maximum in the vicinity of the characteristic creep 
or relaxation times; ( b )  for the distribution function curves corresponding 
to creep compliance and relaxation modulus, these curves are symmetric 
with respect to the ordinate passing through log ( t /K)  = 0; (c )  all other 
respective creep and relaxation distribution function curves present ap- 
proximately the same shape and maximum value. 

The results presented in this paper were obtained in the course of research sponsored by 
the National Academy of Sciences-National Research Council under the Scientific 
Research Project TA-01-101-4006 and the National Science Foundation under the 
Scientific Project NSF-G 8188 at the Division of Engineering of Brown University during 
the academic year 1958-59. 
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R6sum6 
Les courbes martresses de log &(t / k )  en fonction de log ( t / K )  ont 6t6 trac6es A partir 

des donn6es exp6rimentales concernant la retraction, le module de rklaxation, les coef- 
ficients de traction optique et  de tension optique de deux types de resines Bpoxy pour une 
sBrie de temperatures dans la region de transition. Le temps caract6ristique K de 
retraction ou relaxation pour chaque temperature a kt6 d6fini e t  classifi6. Les courbes 
principales ont 6t6 ramenees ?i 1’6quation r6duite de la forme int6grale de I’erreur de 
Gauss e t  les paramktres caracteristiques suivants ont 6t6 calcul6s: &I, les parametres de 
1’6tat vitreux (la rktraction, le module d’6lasticit6, les coefficients de tension et  detraction 
optiques), &2, les paramktres de 1’6tatccaoutchouteux; Td, la temperature “distinctive”; 
Kd, le temps caract6ristique de r6traction ou le temps de r6laxation $, Td; et  les para- 
metres h, des degrhs d’ inclinaison de la courbe principale respectivement dans les 
r6gions de transition et de vitrification. Les recherche8 ont 6% ktendues $, la d6termina- 
tion des fonrtions de distribution des temps de retard e t  de rklaxation mBacanique et 
optique L (log 7) et H (log T) respectivement, repr6eentant la contrihution differentielle 
$, la rompliance instantade, aux roefficients optiques de traction et  de tension aseoci6s 
nux temps de retard, au module instantan6 et  aus coeffirients de traction et, de tension 
associ6s au temps de r6laxation. 

Zusammenfassung 
Aus Versuchsergebnissen uber die Kriechfunktion, den Relaxationsmodul, die span- 

nungsoptischen und verformungsoptischen Koeffizienten von zwei Epoxyharztypen bei 
einer Reihe von Temperaturen im Unwandlungsbereich wurde ein Einheitsdiagramm 
fur log & ( t / K )  gegen log ( t / K )  gezeichnet. Die charakteristische Kriech- oder Relaxa- 
tionszeit K wurde fur jede Temperatur definiert und tabelliert. Die Einheitskurven 
wurden der reduzierten Gleichung des Gauss’schen Fehlerintegrals angepasst und die 
folgenden charakterktischen Parameter berechnet: &I, die Parameter fur die Glaszu- 
stand (Kriechfunktion, Relaxationsmodul, spannungsoptische oder verformungsoptische 
Koeffizienten); Q2, die Parameter fur den Kautschukzustand; Td die charakteristische 
Temperature; Kd di charakterische Relaxationszeit bei Td und die Parameter ht und h, 
fur die Steilheit der Einheitskurven im Umwandlunge- bzw. Glashereich. Die Unter- 
suchung wurde auf die Bestimmung der Verteilungsfunktion fur mechanische und 
optische Verzogerungs- und Relaxationszeiten, L( log T) bzw. N(log r), ausgedehnt, 
die der differentiellen Beitrag zur momentanen Nachgiebigkeit, zu den spannungs- 
optischen oder verformungsoptischen Koeffizienten in Verknupfung mit der Retarda- 
tionszeit und zum momentanen Modul, zu den spannungsoptischen oder verformungs- 
optischen Koeffizienten in Verbindung mit der Relaxationszeit angeben. 
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